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Abstract 

The classification of families of ordered structures, in 
terms of positions in reciprocal space where two or 
more symmetry elements of the pair potential intersect 
at a point, is extended to include general crystal 
structures. Only a relatively small number of space 
groups, 24 in all, are shown to be relevant to 
special-point ordering. The method is illustrated with 
the study of special-point families for a hexagonal 
crystal with two atoms per unit cell. 

1. Introduction 

General symmetry properties of pair potentials and of 
phenomenological free energies are, in many instances, 
sufficient to explain a wide range of phenomena related 
to order-disorder and/or magnetic phase trans- 
formations. The classical example of the power of such 
symmetry arguments is, undoubtedly, the well-known 
Landau theory of continuous phase transformations 
(Landau & Lifshitz, 1958). The concepts of symmetry, 
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and in particular that of 'special points' in reciprocal 
space - defined as points where two or more symmetry 
elements intersect - have been shown to be equally 
useful in the case of instabilities associated with other 
phase transitions (Khachaturyan, 1973; de Fontaine, 
1975). It follows from symmetry considerations that at 
such special points scalar functions, endowed with the 
symmetry of the reciprocal lattice, will have, invariably, 
a minimum, a maximum or a saddle point. Thus, 
special points would seem to play an important role in, 
for example, the search for the lowest-energy (ground 
state) ordered structures (Clapp & Moss, 1968). It 
turns out, however, that special points are quite 
insufficient for a complete description of ground states 
which, in general, are more conveniently treated in real 
space (Kanamori & Kakehashi, 1977; Kudo & 
Katsura, 1976; Richards & Cahn, 1971; Allen & 
Cahn, 1972; Sanchez & de Fontaine, 1981). 

Among the most important applications of special 
points is the study of the onset of short-wavelength 
instabilities in alloys (de Fontaine, 1975). Such 
instabilities may take place below a first-order trans- 
ition, frequently bearing no symmetry relation to either 
the high- or low-temperature (equilibrium) phases (de 
Fontaine, 1981). This particular metastable ordering 
mechanism, known as spinodal ordering, has been 
observed, for example, by Okamoto & Thomas (1971) 
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in the NiMo system. The theory of special-point 
instabilities in f.c.c, and b.c.c, crystals and its ap- 
plication to the NiMo system has been developed by de 
Fontaine (1975). In a series of more recent publi- 
cations, McConnell (1978a,b) has applied similar ideas 
to complex ordering in chalcopyrite and plagioclase 
feldspars. 

The purpose of the present work is to explore the 
consequences of crystal symmetry on the pair poten- 
tials, for a general structure. As we shall see, the 
characterization of special points in a general struc- 
ture, although straightforward, requires additional 
considerations usually not needed for crystals whose 
atoms are at the nodes of a Bravais lattice. We begin in 
§ 2 by expressing the configurational energy in terms of 
normal concentration modes in reciprocal space. By 
formally establishing the point-group symmetry (that of 
the crystal plus inversion) and the translational sym- 
metry (that of the reciprocal of the corresponding 
Bravais lattice) of the normal-mode energies, one 
obtains an associated space group consisting of all the 
symmetry elements of the pair potential. As we shall 
see, out of the 230 crystalline space groups, only 24 are 
relevant for special-point ordering. In § 4, the theory 
will be illustrated with the study of the instability 
families for the hexagonal structure with two atoms per 
unit cell (P63/mme). 

2. Configurational energy 

Consider a general crystal structure with atomic 
species located at positions rm, = R m + Pn, where R m 
stands for a vector of the associated Bravais lattice and 
Pn is a vector within the primitive unit cell of the crystal. 
If we assume, for simplicity, that the crystal is 
composed of two different atomic species, the atomic 
configurations will be described by the spin operator 
a,,(Rm), which takes values 1 or - 1  depending on 
whether there is an A or B atom, respectively, at the 
position rmn. 

In the pair approximation, the configurational energy 
takes the form: 

E = ½ Z  Z Vnn ' (Rm--Rm') 'an(Rm)an ' (Rm ') (1) 
nn t mm' 

where the matrix elements v,,, are given by: 

Vnn,(Rl) = Vnn , (Rm-  Rm, )=  V(Rm + O n -  R m ' -  On')(2) 

with v (r) an effective pair potential for rth neighbors. In 
terms of the interaction energies v AA, v nB and v AB 
between the different atomic species, the effective 
interaction potential is given by: 

v(r) = ¼[ vAA(r) + V nn -- 2vAn(r)]. 

The configurational energy (equation l) takes a 
simpler form when written in terms of reciprocal-space 

variables. Assuming periodic boundary conditions for a 
sufficiently large region containing N Bravais lattice 
points, one can write the energy formula (equation 1) 
as: 

Pc 
E = -  ~ Z Vnn'(k) an(k) a n ' ( - k )  (3) 

nil t --£ 

where the sum over the reciprocal vectors k runs over 
the first Brillouin zone of the reciprocal lattice, and 
where the Fourier-transformed spin operator and 
pair-interaction matrix V~n, are defined as follows: 

1 
an(k) = ~ Z an(Rm) exp(ik'Rm) (4a) 

m 
and 

Vnn,(k ) = Y v,n,(Rt) exp(--ik. Rt) 
l 

= ~ v(R t + p , - -  p,,) exp( - ik .Rl )  (4b) 
l 

where the second equality in equation (4b) follows 
from equation (2). Note that the Fourier transform in 
equations (4a) and (4b) have been defined in such a 
manner that an(k) and V.,,(k) have the translational 
symmetry of the reciprocal lattice, which has been 
accomplished by choosing a different origin (Pn) to 
calculate each of the an(k). If a common origin is 
chosen, the following alternate definition should be 
used: 

an(k ) = exp(ik. Pn) an(k) (5a) 

Vn' , (k )=exp[- ik . (pn-Pn ,  )] Vnn,(k ) (5b) 

where Pn gives the position, with respect to the common 
origin, of the atom n. 

The advantage of imposing translational symmetry 
on the interaction matrix Vnn, (k) will become apparent 
in § 4, where the vanishing of certain elements of 
V,n,(k ) will be inferred from symmetry arguments. 

Equation (3) can be simplified further by diagonaliz- 
ing the Hermitian matrix [see equation (13)] Vnn,(k). 
Thus, the configurational energy becomes: 

N 
E = -  Z Z OOn(k) Fn(k) Fn(--k) (6) 

2 k , 

where w, are the eigenvalues of V,,, and F, are the 
corresponding normal concentration modes. 

Equation (6) has a form suitable for the instability 
analysis, namely that of a sum of an energy coefficient 
w, times a positive quantity I Fn 12 characterizing the 
atomic distribution. Thus, in order to minimize the 
energy, the spectrum of the normal modes will tend to 
peak at those positions in reciprocal space where w, is 
minimum. As discussed in the Introduction, special 
points in reciprocal space are points where such 
minima of 09, may, by symmetry, be present. 
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For the characterization of the special points, one 
must determine the space group Go, which leaves the 
eigenvalues of the interaction matrix invariant. It will be 
seen in the next section that the space group in question 
is, in general, neither that of the crystal nor that of the 
reciprocal of the associated Bravais lattice. 

3. Symmetry of the potential 

Let G× be the space group of the crystal. The symmetry 
dements of G× are, in Seitz (1936) notation, (axlX) 
where a x is a symmetry element of the point group of 
the crystal and x is a translation (not necessarily a 
lattice translation). The operation (axl "0 transforms any 
vector r in the crystal into an equivalent vector r' 
according to: 

(axlX) r - a x r + "t = r'.  

The point-group symmetry operation a x applied to the 
difference of two vectors r I and r 2 gives: 

ax(r I - r2) = r~ - r~ (7) 

where I rl -- r21 = I r~ - r~l. Since the effective potential 
v(r) depends only on the distance between atoms, it will 
be invariant with respect to the symmetry operations of 
the point group of the crystal: 

v (r 1 - -  r 2 )  - -  v[%(r~ - r 2 ) ] .  ( 8 )  

Likewise, the effective potential will be invariant with 
respect to the operation of inversion (i): 

V ( r  1 - -  r2)  = p ( r  2 - -  rl). (9) 

Thus, we conclude from equations (8) and (9) that 
the symmetry group G~ of the effective potential is the 
group generated by the union of the point-group 
symmetry elements of the crystal and the inversion 
center. The elements of G~ will be denoted by av: 

v ( r ) =  v ( a v r ) .  (10) 

A point of interest for establishing the space group 
G,o of the eigenvalues co n is the fact that Gv is always a 
subgroup of the point group of the Bravais lattice. 
Thus, if R~ is a lattice vector, we will have 

a v R t = R v (11) 

with R l, a l s o  a lattice vector. 
Next, we obtain the transformation law for the 

elements of the interaction matrix at two points k and 
k' related by a symmetry operation of Gv, i.e. k = a v k ' .  

By applying a v to the argument of the real-space 
potential v (r) in equation (4), and by using equations 
(10) and (11), we obtain the following expression for 
the element V,n,(k ) of the interaction matrix: 

Vnn ' (k)  = ~.  v [av (R1  + Pn - -  Pn ' ) ]  e x p ( - - i a v  k . a v  Rl) 
1 

= ~ v(Rv + av Pn - - a v  Pn') e x p ( - - i a v  k.Rv) 
l' 

(12) 

where we have explicitly used the following invariance 
property of the scalar product: 

k.R t = a  vk.a vR t = a  vk .R v. 

If a~ equals the inversion operation i, which is not 
necessarily an element of the point group of the crystal, 
equation (12) reads: 

Vnn , (k  ) = ~. v ( R / ,  - -  Pn + Pn ' )  exp(+zX. Rv) 
m' 

= Vn, n(-k) (13) 

stating simply that the matrix V~n,(k) is Hermitian. On 
the other hand, if a v is a symmetry element of the point 
group of the crystal, we will have: 

av  Pn - -  av Pn' = a x  Pn - -  a x  Pn' = r - -  r' ,  

where the vectors r and r' are, respectively, equivalent 
to pn and p~,. Since, in general, r and r' will fall outside 
the unit cell of the crystal, we may introduce lattice 
translations R~ and R~' such that: 

a x  Pn - -  a x  Pn' = Pno -- P,- + R~ - R~', (14) 

where p~o and p~. are vectors within the unit cell. The 
index n~ generated by the symmetry operation a x is 
such that the two vectors Pn and Pn~ within the unit cell, 
although in general different, correspond to the same 
Wyckoff (1922) position. Thus, the net effect of the 
operation a v on the set of vectors {Pn } is to generate a 
set of lattice translations, {R~}, and a new set of 
transformed indices, {n~}, which is equal to a certain 
permutation of the original set {n }. 

Combining equations (12) and (14), we obtain the 
following transformation rule for the element V,~,(k) of 
the pair-interaction matrix: 

Vnn,(k ) = e x p ( i a  x k .  R n) V~n~(,Xx k) e x p ( - - i a  x k. R~') 

(15) 

where the set {n~} is, as explained above, a given 
permutation of the set {n}, and where the R~ are 
lattice-translation vectors defined by equation (14). 

It follows from equation (15) that the interaction 
matrices at position k and at position a x k are related 
by a similarity transformation of the form: 

V(k) = M -1V(a x k) M (16) 

where M is the product of a matrix S, which exchanges 
columns of V, times a diagonal matrix with elements 
e x p ( - - i a x k .  R n ) .  Since two matrices related by a 
similarity transformation have the same eigenvalues, 
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we conclude that the normal-mode energies Ogn(k ) are 
invariant to the symmetry operations av: 

a~n(k) = OJn(a v k). (17) 

Furthermore, the ~o, have the translational symmetry 
of the reciprocal lattice: 

(.On(k) = OJn(k + g) (18) 

where the reciprocal-lattice vectors g are such that 
g . R  m = 2zrZ, (L integer) for all vectors R m of the 
Bravais lattice. Note, furthermore, that av g is also a 
reciprocal-lattice vector: 

a v g = g ' .  (19) 

Thus, in the Seitz notation, the normal-mode energies 
o9. are invariant to the symmetry operation (avl g). The 
associated space group Go, is therefore [see equations 
(17), (18) and (19)] the direct product of Gv, a centered 
group, times the translation group {g}: 

Go,= Gv ® {g}. 
We then arrive at the result that all relevant space 
groups Go, for special-point instabilities are centered 
symmorphic groups, i.e. a center of inversion is always 
present and the generators of the group do not contain 
glide planes or screw axes. 

The characterization of the special points associated 
to a given crystal structure can be summarized as 
follows. By introducing a center of inversion (if absent) 
into the symmetry class of the crystal Gx, we first 
determine the relevant point group Gv. The next step 
consists in determining the reciprocal of the associated 
Bravais lattice, from which the translational symmetry 
of Go, is obtained. Finally, the special points of interest 

_ 

are given by those Wyckoff positions of the centered- 
symmorphic group Go, with fixed coordinates. 

From the International Tables for  X-ray Crystallog- 
raphy (1952) a list of all the 24 centered symmorphic 
groups, together with their special points, has been 
compiled in Table 1. Note that the special points listed 
in Table 1 are given with respect to the reciprocal- 
lattice coordinates. 

4. Special-point families for hexagonal systems 

As an application of the study of special points in 
general structures, we consider a hexagonal crystal 
with two atoms per unit cell (P63/mmc). The 
associated Bravais lattice and its reciprocal are both 
hexagonal. Thus, the translational symmetry of the 
normal-mode energies is that of the hexagonal lattice. 
The symmetry class of the crystal is 6/mmm, which 
already contains a center of inversion, and, therefore, it 
coincides with the symmetry group Gv of the real-space 
potential. Thus, according to our discussion in § 3, the 
special points of interest are those of the centered 

symmorphic group obtained from the direct product of 
6/mmm times the hexagonal translation group of the 
reciprocal lattice. The space group in question is 
P6/mmm, containing six special points (see Table 1). 

Since there are two atoms per unit cell, at special 
positions 000 (n = 1) and m~2x~ (n = 2), the pair-inter- 
action matrix V~,,(k) is 2 x 2, with eigenvalues: 

to~(k) = V ~ ( k ) -  I V~2(k)l (20a) 

and 

o)2(k) -- Vii(k) + I V~2(k)l (20b) 

where Vll(k ) and V12(k) are given in terms of the 
real-space interaction energies by equation (4). Table 2 
gives the values of 091 and (2) 2 at the special points, for 
the case where up to four interaction energies v(r) are 

Table 1. The 24 centered symorphic groups 

Special-point coordinates are given in terms of reciprocal-lattice 
vectors a*, b*, c*. 

Space groups 
(reciprocal 

System space) Special points 

Triclinic Pi 000; ½00; 0~0; 00~; ,}~; ,~}; 0~; 
Monoclinic P2/m 000; ~00; 0~0; 00/2; ~0; ~)~; 0~; ~-} 

C2/m 000; 100; 00~; 10~; ~t~0; ~r~ 
(2nd set) 

Orthorhombic Pmmm 000; ~00; 0~0; 00~; ~r/~O; ~ ;  0~; ~r~ 
Cmmm 000; 100; 00~; 10½; ~); ~}~ 
Fmmm 000; 001; 0/z}; ~3~; ~-/~0; ~/A 
Immm 000; 100; 010; 001; ~4z} 

Tetragonal P4/m I 
P/mmm j 000; ~30; 00/2; ~/~); ~0~; ~z~ 
I4/m I 
14/mmmJ 000; 100; 001; 10½; ~A 

Trigonal P3 000; ~00; 00}; ~} 
P31m 000; ~00; 00~; ~3,}; ~}0; ~-} 
P3ml 000; ~00; 00}; ~O~ 
R3- 
R3m } 000; ~30; 00~; 

Hexagonal P6/m 
P6/mmmJ 000; {DO; 00~; ~ ;  ~]0; ]4y} 

Cubic Pm3 I 
Pm3m J 000; ,~)0; ~-t20; ½~ 
Fm3 } 000; 100; ~}0; ~-~ Fm3m 
Ira3 000; 100; 
lm3m 000; 100; 1½0; ~} 

Table 2. Normal-mode energies for  the hexagonal 
system with four different interaction energies v t, i = 

1, 2, 3, 4 (see Fig. 1) 

Special point 091 (k) to 2 (k) 

000 3v: + V4-- 31V2'+ v3l 3v x + v 4 + 3Iv 2 + v31 
~00 --v I + v 4 -  13v 3 -  vel --v I + v 4 + f3v 3-  Vel 
00~ 3 h -  v4 3vx -- v4 
~0~ - v , -  v4 - h -  v4 
p~0 ~ v ,  + v4 -~v, + v4 
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considered• The interaction energies in question [v~ = 
v(ri), i = 1, 2, 3, 4] are indicated in Fig. 1. The regions 
in the interaction-parameter space within which the 
normal-mode energy for a given special point is 
minimum are shown in Fig. 2 for the special case v3 = 
v 4 = 0. Similar plots are shown in Fig. 3 where the 
ordinate and the abscissa are, respectively, the ratios a 3 
= P 4 / P  1 and O~ 2 ~- P 2 / P  1. 

Note that, at the special points 00½; ~ 0 ;  ~111 and ~0~,1 
the off-diagonal element V~2(k ) of the interaction matrix 
vanishes, making the two normal concentration modes 
degenerate in energy. Such degeneracies are not 
accidental, and they can be easily explained by means 
of the transformation rule, equation (15), for the 
interaction matrix. In fact, if a x in equation (15) is 
taken to be the mirror plane through the origin and 
perpendicular to the sixfold axis, we obtain nor -- n (for 
n = 1, 2), R 1or = 000 and R E = 001. Thus, for V~2(k), 
equation (15) yields: 

V~2(k) = V~E(k') exp(hp) (21) 

V4 

Fig. 1. The hexagonal crystal structure. The four interaction 
parameters used in normal-mode energy calculations are in- 
dicated (v~, i = 1, 2, 3, 4). 

vl 

tO 

-tO I 0  

Fig. 2. Regions of minimum value of normal-mode energies for 
nearest-neighbor interactions on the basal plane (v 1) and between 
adjacent basal planes (v2). Regions I and II for special point 000 
correspond, respectively, to ordering (see Fig. 4a) and clustering. 
Representative structures for subfamilies III and IV of special 
point ½00 are shown, respectively, in Fig. 4(b) and (e). 
Special-point families ~ 0  and ~ are degenerate in energy. 

where k' is related to k through the mirror in question, 
and where tp -- k' R 2 If we now choose k equal to the • or" 
special point 00½, equation (2 l) becomes: 

v, (00½) = - v 2(00½) 

i i ~ i , l 

000 

~>0 

__. \ , , = - ~  ~,-~, 

ooo ~,e--~ *,-*, \ 

Vt,< 0 I I I ~ t I 

tO 0 tO 

(a) 

~.0 , , , 

0oo ,,,o 'ooo 
/ I ,o>o 

-,.of V ::o ½ oo v,,<o 

-~10 1 t i i i t 
- -3o - ~  -,.o ; ~o z:o :,o 

(b) 

3 0  I 
1 O0 I 0 0 0  
2 

l v,t > 0 v,t > 0 

I g g  

2 . 0  

- 1.0 

- 2 0  

0 0 0  

v , , <  0 

± oo 
2 

vaz< 0 

- 3 . 0  i I i i 

- 3 . 0  - 2 0  - 1.0 0 tO  2 Q  3 0  

~2 

(c) 

Fig. 3. Regions of minimum value of normal-mode energies for 
hexagonal system with four pair interactions (see Fig. 1). 
Ordinate and abscissa are, respectively, the ratios a 3 = v 3 / v  ~ a n d  

a 2 = v 2 / v  r Different plots correspond to (a) v I < 0, a 4 = 
v 4 / v  ~ = 1.0; (b) v~ > O,a 4 = 1.0; (c) v~ > O,a 4 _< O. 
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which implies the vanishing of V12(00½) since Vnn,(k ) 
has the translational symmetry of the reciprocal lattice 
and since, furthermore, the vectors 00½ and 00~ are 
related by g = 001. Equation (15) can be similarly 
applied to other special points and symmetry elements: 
the mirror plane perpendicular to the sixfold axis also 
implies the vanishing of ViE(k ) at ~0~1 t and at ~-~,~11 
whereas the threefold axis requires VIE to vanish at N0. 
In general, a given symmetry element a will require the 
vanishing of certain elements of the interaction matrix 
at a position k in reciprocal space, if: ( i )ak  = k + g; 
i.e. k is on the Brillouin-zone boundary [the case k = g 
is excluded, see rule (iii)]; (ii) the permutation connect- 
ing the set {n,~} to {n} is the identity; and (iii) the phase 

R n _ shift is such that k. ( ~ R~') ve 2~rJ_, with L integer. 

4(a).  N o n - d e g e n e r a t e  special  points  

For the case of the hexagonal lattice with two atoms 
per unit cell, the Fourier transforms of the spin 
operators at non-degenerate special points are given by: 

1 
0"l(k ) = - ~  [ Fl(k) + F2(k)] 

1 
cr2(k ) = - - ~  [--Fl(k ) + F2(k )] exp[--i0(k)] 

v 

where Fi(k ) are the normal-mode amplitudes [see 
equation (6)] and where 0(k) is defined by: 

V~2(k) = I V~2(k)l exp[i0(k)]. (22) 

It follows from equation (20), that w 2 is always larger 
than 01 . Thus, the lowest-energy state corresponds to 
F2(k) = 0, in which case 

1 
o l ( k )  = - -w_ r~(k)  

X/2 

and 

a2(k ) = - a l ( k  ) exp[--i0(k)]. (23) 

Since 0(k) will in general depend on the choice of unit 
cell, it is more convenient to express equation (23) in 
terms of the unit-cell-independent phase factor 0'(k) 
defined as follows: 

V~'2(k) = I V~'2(k)l exp[i0'(k)] 

where  Vl'2(k) is given by equation (5b). Thus, com- 
bining equations (5b), (22) and (23), we obtain: 

a2(k ) = - o l ( k  ) exp[ - i0 '  (k)]. exp[ - ik .  (Pl - P2)] 

where p~ and P2 are vectors giving the positions of the 
two atoms in the unit cell. There are two non- 
degenerate special-point families in the hexagonal 
lattice, namely those corresponding to special points 
000 and ½00. Each of the families splits into two 

subfamilies, depending on the sign of V12 [VI2 is real at 
000 and ½00, as can easily be seen from its definition, 
equation (4)1. The families in question correspond to 
a2(k ) -- - a l (k )  for 0(k) -- 0 (i.e. V12 > 0) and o2(k) = 
ol(k) for 0(k) = 7r (i.e. V12 < 0). The representative 
structures of the 000 family are pure A (or B) for 1112 < 
0 (i.e. clustering) and an ordered structure consisting of 
an alternate sequence of pure A, pure B, pure A. . .  basal 
planes for I,'12 > 0. A unit cell for the latter structure 
(space group P(~m2) is shown in Fig. 4(a), where open 
and full circles correspond to the two atomic species, 
and where atoms on adjacent basal planes are 
represented by circles of different sizes. 

For the ½00 family, two ordered subfamilies result. 
Their representative structure, both of stoichiometry 
AB, are shown in Fig. 4(b) (space group Pmma) for V12 
< 0 and in Fig. 4(c) (space group Pmmn) for V12 ~ 0. 
The structure shown in Fig. 4(b) is that of the MgCd 
system and it has been found by Kudo & Katsura 
(1976), together with the structures shown in Fig. 4(a) 
and (c), to be the ground state of the h.c.p, lattice with 
first- and second-neighbor pair interactions. 
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1 "  2/ 
(b) (c) 

(d) Z /  
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o 
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/ /  " " 
° 0 ° 0 

o • • 
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Fig. 4. Representative structures for each of the special-point 
families: (a) 000 (P6m2); (b) ~0 (Pmma); (c) ~00 (Pmmn); (d) 
Op~._!P~ml); (e) ~ (C2/m); ( f ) ~  plus 000 (Cmcm) and (g) 

plus 00~ (C2/m). 



220 SPECIAL-POINT ORDERING IN GENERAL CRYSTAL STRUCTURES 

4(b). Degenerate special points 

For degenerate special ponts, the Fourier transforms of 
the spin operators are equal to the normal-mode 
amplitudes. The representative structures of stoichio- 
metry AB for the 00½ and ~ ~0: special points are shown, 
respectively, in Fig. 4(d) (space group P3m 1) and Fig. 
4(e) (space group C2/m) where half-shaded circles 
indicate that the two atomic species alternate along the 
[001] direction. Since the structures corresponding to 
the special points 00½ and ~ ~0~ require at least 
fourth-neighbor interactions to be stable, they have not 
been reported by Kudo & Katsura (1976), who 
included up to third-neighbor interactions in their 
analysis of the h.c.p, system. 

The remaining degenerate special points, namely N0 
and 1~ ~r~, are such that, by themselves, they do not give 
rise to a perfect ordered structure. To obtain a structure 
with these special points, one must at least include one 
additional concentration plane wave in the Fourier 
spectrum of the spin operators trn(R). Fig. 4 ( f )  shows 
a structure of stoichiometry A 2 B, found to be a ground 
state by Kudo & Katsura (1976), obtained with special 
points ~ 0  and 000 (space group Cmcm). The special 
point ~ together with 00½ give rise to the structure of 
stoichiometry AB (space group C2/m) shown in Fig. 
4(g). 

The failure of certain special points to give rise to an 
ordered structure and, conversely, the fact that many 
real ordered structures contain points which are not 
special points, clearly indicates that the analysis 
presented here does not properly apply to the study of 
ground-state structures. Nevertheless, as mentioned in 
the Introduction, the classification of ordered struc- 
tures into special-point families becomes significant 
when instabilities are studied. 

5. Conclusion 

The highest instability temperature, defined as the 
temperature at which the disordered solid solution first 
becomes unstable, can be shown to occur for con- 
centration waves with wave vectors located at the 
absolute minimum of the Fourier transform of the pair 
potentials (de Fontaine, 1975). Thus, the relevance of 
special points to the study of ordering instabilities in 
solid solutions rests on the symmetry requirement that, 
at such points, the pair potential must have a minimum, 
a maximum or a saddle point. 

It would appear at first that a classification of 
systems in terms of special points would be overly 
restrictive since, in principle, instabilities may occur for 
any position k in reciprocal space. However, special- 
point ordered structures have the smallest Bravais 
lattice compatible with the high-temperature dis- 
ordered phase and, thus, will invariably be ground 
states for short-range-interaction potentials. For metal- 

lic systems, in particular, the real-space pair potential 
decays relatively fast with the interatomic distance and 
therefore most solid solutions will in fact be expected 
to display only special-point instabilities. 

In the disordered state, such systems will be 
characterized by large-amplitude fluctuations of the 
special-point concentration wave. Thus the short-range- 
order intensity, as measured for example in X-ray 
scattering experiments, will be maximum at certain 
special-point positions. The instability itself will in 
general take place below an equilibrium phase trans- 
ition and, thus, will only be brought into play by fast 
quenching of the solid solution. Such a non-equilibrium 
spinodal ordering mechanism is best observed when the 
unstable concentration wave is not part of the 
concentration spectrum of the equilibrium phase, as in 
the case of the NiMo system studied by Okamoto & 
Thomas (1971). 

The classification in terms of special-point families 
should prove to be particularly useful in the case of 
complex ordering in minerals and low-symmetry 
structures in general, where a complete ground-state 
analysis cannot be carried out as readily as in the f.c.c. 
or b.c.c, crystal structures. Unlike the case of crystals 
with one atom per unit cell, where the special points 
relevant to ordering are those of the associated 
reciprocal lattice, we have found that in general 
structures such points are not necessarily those of the 
reciprocal of the Bravais lattice. A convenient way of 
analyzing such general structures is to introduce an 
interaction matrix and its associated normal con- 
centration modes. The special points of interest are 
those of the space group of the eigenvalues of the 
interaction matrix, i.e. the energies of the normal 
concentration modes. The space groups in question are 
found to be centered symmorphic groups, 24 in all, 
obtained from the direct product of the symmetry class 
of the crystal plus inversion, times the translation group 
of the reciprocal of the associated Bravais lattice. Our 
results concerning the symmetry of the normal-mode 
energies in reciprocal space, follow directly from the 
transformation rule for the interaction matrix [see 
equation (15)]. An important application of equation 
(15) concerns the study of special-point degeneracies, 
as was shown in § 4 for the hexagonal system. Such 
degeneracies are related to symmetry elements of the 
associated centered-symmorphic space group and they 
can be studied, by means of equation (15), without 
referring to the particular atomic distribution in real 
space. 

This work was supported by the Army Research 
Office (Durham). 
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Abstract 

Theorems referring to subgroups of the finite double 
point groups are formulated. All possible non-evident 
subgroups are enumerated. The results obtained for 
subgroups correspond to well known Opechowski rules 
for classes of double groups. 

For some purposes, e.g. for finding the transitive 
permutational representations (Hall, 1959, 
Gorzkowski, 1976) playing a very important role in 
so-called coloured symmetry, it is necessary to know all 
the subgroups of the finite double point groups. This 
problem is analyzed in this paper. Three theorems 
referring to the subgroups of the finite double point 
groups will be formulated. In a certain sense these 
theorems are analogous to the well known Opechowski 
(1940) rules referring to the classes of double point 
groups. 

According to Gorzkowski & Suffczynski (1978)we 
remark that if H is a su_bgroup of the single group G, 
then the double group H is a subgroup of the double 
group G. This fact is used implicitly in many 
expositions dealing with the double groups (e.g. 
Bradley & CrackneU, 1972) and it will not be proved 
here. 

* Permanent address: Instytut Fizyki PAN, al. Lotnikow 32/46, 
02-668 Warszawa, Poland. 

0567-7394/82/020221-03501.00 

A subgroup of the double point group which itself is 
a double group in the sense that it includes the identity 
E and the rotation E through the angle 27c shall be 
called an evident subgroup. The problem of the 
non-evident subgroups of all the crystallographic 
double point groups has been solved (Gorzkowski & 
Suffczynski, 1978). Now the finite double point groups 
without crystallographic restrictions are investigated. 

At the beginning, for simplicity, the double point 
groups without improper rotations are taken into 
account. The following theorem will be proved. 

Theorem 1 

Every non-evident subgroup of the finite double 
point group without improper rotations can contain 
only the rotations C~+t through the angles 47d/(2n + 1) 
where l and n are integers. 

Proof. At first the even-order symmetry axis is 
considered. Let C2, , denote the rotation through the 
angle 2z~/2n = z~/n, and C2n the rotation through the 
angle z~/n + 27c. One can have: 

c~. . = ~ . .  = ~. 

We see that the group generated by C2n o r  C2n 
contains both E and E. Therefore, the subgroup 
containing the even-order symmetry axis is an evident 
one. 

Now the odd-order symmetry axis is taken into 
account. Let C2n+1 denote the rotation through the 
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